quinta-feira, 18 de abril de 2019



Corrente de Foucault (ou ainda corrente parasita) é o nome dado à corrente elétrica induzida dentro de um material condutor, quando sujeito a um campo magnético variável devido à lei de indução de Faraday. A corrente de Foucault flui em uma volta fechada dentro de um condutor, em planos perpendiculares, que pode ser induzida por um condutor estacionário próximo por um campo magnético variante criado por um eletroímã ou transformador, por exemplo, ou por um movimento relativo a um ímã e um condutor próximo. A magnitude da corrente em uma dada volta é proporcional ao campo magnético, a área da volta, à variação do fluxo e inversamente proporcional à resistividade do material.
Conforme a Lei de Lenz, a magnitude e sentido dessa corrente se opõe à variação do campo que a provoca, formando polos magnéticos que geram forças que efetivamente se opõe ao movimento do material condutor dentro do campo magnético. Este efeito é empregado na frenagem de trens controlados por eletroímãs, que são usados para impedir a rotação de ferramentas rapidamente quando desligadas. A corrente de Foucault fluindo através da resistência de um material também dissipa energia em forma de calor por efeito Joule, que causa perda de energia em indutores, transformadores, motores elétricosgeradores e outras máquinas em corrente (AC). Para evitar a dissipação de energia, os materiais sujeitos a campos magnéticos variáveis são frequentemente laminados ou construídos com placas muito pequenas isoladas umas das outras. A corrente de Foucault também é utilizada por fornos de aquecimento por indução e para instrumentos de detecção de rachaduras e falhas em metais.

A primeira pessoa a observar essa corrente foi Fraçois Arago (1786-1853), o 25° Primeiro Ministro da França, que também era matemático, físico e astrônomo. Em 1824 ele observou que oque foi chamado de magnetismo rotativo, e que a maioria dos corpos condutores podiam ser magnetizados; estas descobertas foram completadas e explicadas por Michael Faraday (1791-1867).
Em 1834, Heinrich Lenz estabeleceu a lei de Lenz, onde diz que a direção do fluxo da corrente induzida em um objeto será tal que o campo magnético irá se opor à variação do fluxo magnético que causou o fluxo da corrente. Esta corrente produz um campo secundário que cancela a parte externa do campo e causa parte do fluxo externo a se desviar do condutor.
O físico francês Jean Bernard Léon Foucault (1819-1868) foi creditado à descoberta dessa corrente. Em setembro de 1855, foi percebido o aumento na força necessária para rotacionar o aro de um disco de cobre quando colocado entre dois polos de um ímã, ao mesmo tempo, o disco se aquecia pela corrente induzida no metal. O primeiro uso da corrente de Foucault para teste não destrutivo ocorreu em 1879 quando David Edward Hughes usou o princípio para conduzir testes de triagem metalúrgica.

Explicação[editar | editar código-fonte]

Correntes de Foucault (I, vermelho)induzidas em uma placa de metal (C)enquanto se move sob um ímã (N). O campo magnético (B, verde) é direcionado para baixo atravessando a placa. O campo que aumenta na borda principal do ímã (esquerda) induz uma corrente no sentido anti-horário, que pela lei de Lenz cria seu próprio campo magnético (flecha esquerda azul)direcionado para cima, contrário ao campo do ímã, produzindo uma força retrógrada. Semelhantemente, na borda do fundo do ímã (direita), uma corrente no sentido horário e um campo para baixo é criado (flecha direita azul) também produzindo uma força retrógrada.
Ilustração de penetração de campo magnético
Diagrama mostrando a diminuição exponencial exp(-z/δ) da intensidade da corrente de Foucault , conforme a profundidade z cresce .
Laminações de núcleos magnéticos em transformadores melhoram muito a eficiência por minimizarem as correntes de Foucault.
Um ímã induz correntes elétricas circulares em uma lâmina de metal passando por ele. Veja o diagrama à direita que mostra uma lâmina de metal (C) se movendo à direita sob de um ímã estacionário. O campo magnético B (flechas verdes) do polo norte N do ímã atravessam a lâmina para baixo. Já que o metal está se movendo, o fluxo magnético através da lâmina está variando. Na parte da folha sob a borda principal do imã (lado esquerdo) o campo magnético através da lâmina aumenta ao se aproximar do ímã, . Pela lei de indução de Faraday, isso cria um campo elétrico circular na lâmina em sentido anti-horário ao redor das linhas de campo magnético. Este campo induz um fluxo de corrente em sentido anti-horário I (flechas vermelhas), na lâmina. Esta é a corrente de Foucault. Na borda do fundo do ímã (lado direito) o campo magnético através da lâmina diminui, , induzindo uma segunda corrente de Foucault em sentido horário na lâmina.
Outra maneira de entender a corrente é enxergando que os portadores de carga (elétrons) livres na lâmina de metal estão se movendo com a lâmina para a direita, então o campo magnético exerce uma força lateral neles devido à força de Lorentz. Já que a velocidade Vdas cargas são para a direita e o campo magnético B é direcionado para baixo, pela regra da mão direita, a força de Lorentz nas cargas positivas é em direção à traseira do diagrama (à esquerda em relação à direção do movimento V). Isso causa uma corrente I em direção à traseira sob o ímã, que circula ao redor através da lâmina fora do campo magnético, horário para a direita e anti-horário para a esquerda, em frente ao ímã novamente. Os carregadores de carga no metal, os elétrons, possuem na verdade uma carga negativa (q < 0) então sua direção de movimentação é contrário à direção da corrente convencional mostrada.
Pela lei de Ampère da corrente, cada uma das correntes circulares criam um campo magnético contrário (azuis) que, devido à lei de Lenz, se opõe à variação no campo magnético que o causou, exercendo um força de arrasto na lâmina. Na borda principal da lâmina (lado esquerdo), pela regra da mão direita, a corrente no sentido anti-horário cria um campo magnético apontado para cima, contra ao campo magnético do ímã, causando uma força repulsiva entre a lâmina e a borda principal do ímã. Em contraste, na borda de fundo (lado direito), a corrente no sentido horário causa um campo magnético apontado para baixo, na mesma direção do campo magnético do ímã, criando uma força atrativa entre a lâmina e a borda de fundo do ímã. Ambas as forças se opõem ao movimento do ímã. A energia cinéticaque é consumida superada pela força de arrasto é dissipada em forma de calor pelas correntes fluindo através da resistência do metal, então o metal se aquece sob o ímã.
Para o caso de um solenoide sobre um plano condutor, sua densidade corrente  em seu interior, ou seja, a corrente de Foucault pode ser dada por:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
sendo  a profundidade de penetração, que pode ser vista no efeito pelicular, que relaciona a profundidade em que o campo magnético penetra no material em função da frequência com que varia. É importante sobressaltar que as correntes geradas, neste caso, circulam o plano em volta do eixo do solenoide com uma profundidade , assim como o fato em que a corrente de Foucault diminui a intensidade exponencialmente à medida que os campos penetram no condutor, de acordo com o termo [1]

Propriedades[editar | editar código-fonte]

(esquerda) Corrente de Foucault (I, vermelho) em um transformador sólido de ferro. (direita) Fazendo um transformador de ferro feito de laminações finas paralelas ao campo (B, verde), com isolação entre eles, reduzindo as correntes de Foucault.
A corrente de Foucault em condutores de resistividade diferente de zero gera calor bem como forças eletromagnéticas. O calor pode ser utilizado para aquecimento por indução. As forças eletromagnéticas podem ser usadas para levitação, criar movimento ou para frenagens fortes. A corrente de Foucault também ter efeitos indesejáveis, como a dissipação de potência em transformadores. Nesta aplicação, ela é minimizada com placas finas, por laminação de condutores ou outros detalhes no formato do condutor.
As correntes de Foucault auto induzidas são responsáveis pelo efeito pelicular em condutores.[2] Este último por ser usado para testes não destrutivos de materiais para recursos geométricos, como micro trincas.[3] Um efeito semelhante é o efeito de aproximação, que é causado por correntes de Foucault induzidas externas.[4]
Um objeto ou parte de um objeto sofre intensidade de campo constante e direção onde ainda há movimentação relativa do campo e o objeto (por exemplo no centro de um campo no diagrama), ou campos variados onde as correntes não podem circular devido à geometria do condutor. Nestas situações cargas coletam ou dentro do objeto e essas cargas produzem potenciais elétricos estáticos que se opõem qualquer corrente a mais. As correntes podem estar inicialmente associadas à criação de potenciais estáticos, mas devem ser transitórias e pequenas.
A corrente de Foucault geram perdas resistivas que transformam algumas formas de energia, como a energia cinética, em calor. Este aquecimento reduz a eficiência de transformadores de núcleo de ferro e motores elétricos e outros dispositivos que usam campos magnéticos variantes. As correntes de Foucault são minimizadas nestes dispositivos por seleção de materiais de núcleo que possuem baixa condutividade(por exemplo, ferrite) ou utilizando placas finas de materiais magnéticos, conhecidas como laminações. Elétrons não podem cruzar o espaço isolante entre as laminações, e então não podem circular em arcos largos. Cargas se juntam nos limites da laminação, em um processo análogo ao efeito Hall, produzindo campos elétricos que se opõem à qualquer acúmulo de carga e então suprimindo as correntes de Foucault. Quanto a menor a distância de separação entre as laminações adjacentes (por exemplo, quanto maior o número de laminações por unidade de área, perpendicular ao campo aplicado), maior a supressão das correntes de Foucault.
A conversão da entrada de energia para calor não é sempre indesejável, mas, existem algumas aplicações práticas. Uma é a frenagem de alguns trens conhecida como freio de corrente de Foucault. Durante a frenagem, as rodas de metal são expostas ao campo magnético de um eletroímã, gerando correntes de Foucault nas rodas. Esta corrente é formada pelo movimento das rodas. Então, pela lei de Lenz, o campo magnético formado pela corrente de Foucault será contra sua causa. Logo, a roda sofrerá uma força contra o movimento inicial. Quanto mais rápido as rodas girarem, mais forte será o efeito, significando que à medida que o trem reduz a velocidade, a força de frenagem é reduzida, produzindo um movimento de parada suave.
O aquecimento por indução faz uso de correntes de Foucault para fornecer aquecimento de objetos de metal.

Equação de difusão[editar | editar código-fonte]

Sabe-se que pela ligação metálica que os elétrons estão espalhados analogamente a uma nuvem, deste modo temos que a condução se deve ao movimento destes portadores de carga de forma "livre" no interior do sólido, portanto bons condutores metálicos, sendo paramagnéticos ou diamagnéticos, estes portadores se movem de modo a minimizar interações e colisões entre a estrutura do sólido e a os próprios elétrons, podendo apresentar um caminho livre da ordem de m. Assim, temos o conceito de velocidade de deriva, definida por:
Deste modo temos que o campo elétrico gera uma corrente que pode ser dada por:
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
sendo  o número de portadores,  a carga do elétron e  o campo elétrico. Esta equação é válida para o caso de bons condutores, pois a influência do campo magnético no condutor é desprezível.
Analisando um caso em que o campo magnético varia em alta frequência, temos que a corrente de Foucault pode ser dada pela equação acima, como também podemos justificar o surgimento desta corrente através de três equações de Maxwell e a relação entre a densidade de fluxo magnético e o campo, que estão representadas abaixo:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Com isso, para um plano condutor, temos que pelas relações descritas acima e a propriedade de rotacional do rotacional visto em identidades do cálculo vetorial, chegamos em:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
a qual podemos chamar de equação de difusão, em que  corresponde a permeabilidade magnética.[1]

Dissipação de potência[editar | editar código-fonte]

Sob certas condições (material uniforme, campo magnético uniforme, sem efeito pelicular, etc.) a potência dissipada (P) devido à corrente de Foucault por unidade de massa por uma lâmina fina ou por um fio pode ser calculada pela seguinte equação:[5]
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
onde  é o pico do campo magnético (T),  a espessura da lâmina ou o diâmetro do fio (m),  a frequência (Hz),  é constante igual a 1 para uma lâmina fina e 2 para um fio fino,  a resistividade do material (Ω/m) e  a density do material (kg/m3).
Esta equação é valida apenas nas chamadas condições quasi-estáticas, onde a frequência da magnetização não resulta no efeito pelicular, que, a onda eletromagnética atravessa completamente o material.

Efeito pelicular[editar | editar código-fonte]

Artigo principal: efeito pelicular
O efeito pelicular, também conhecido como efeito capilaridade ou ainda skin effect, em condutores é uma manifestação de um caso particular de corrente de Foucault, na qual a corrente elétrica tende a fluir na periferia de um condutor longo e retilíneo.
Esta "profundidade" com o campo penetra, consequentemente a corrente, pode ser dada por:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Portanto quanto maior a frequência, menor será a penetração do campo.[1]

Aplicações[editar | editar código-fonte]

Freio electromagnético por corrente de Foucault[editar | editar código-fonte]

Freio pela corrente de Foucault.
Freio eletromagnético por corrente de Foucault , também conhecido inglês eddy current break ou induction break, em português pode gerar confusão com o freio eletromagnético (eletromecânico) que utiliza força magnética para mover um objeto e mecanicamente por atrito gerar a frenagem. Porem no freio utilizando corrente de Foucault é através de uma força eletromagnética que atravessa um imã permanente próximo ao um condutor em movimento relativo, assim quando campo e ativado gera a frenagem devido ao campo contrario gerado pela corrente de Foucault induzida no condutor. Sendo este tipo de freio empregado em montanhas russas, trem de baixa velocidade e como freio secundário em caminhões e trailers . [6]

Efeitos repulsivos e levitação[editar | editar código-fonte]

Pode ser visto muitas experiências na internet , ilustrando o efeito de levitação devido a energizar um eletroímã sobre um superfície condutora , assim o gerando campo magnético, que induz uma corrente na superfície que gera um campo magnético contrario ao do imã, assim se magnitude da força do campo for maior que o peso do eletro ima ele levitará . Por mas que esta seja uma forma fácil de ilustrar o fenômeno, existe diversas aplicações mais engenhosas, como os grandes transportes terrestres por levitação da Alemanha, Japão ,USA e Reino unido, fora de sistemas de lançamento de misseis, em que o ajuda diminuir o atrito ao suporte de lançamento. [7]

Sensores de vibração e posição[editar | editar código-fonte]

A corrente de Foucault e gerada através de variação de um campo magnético sobre um superfície condutora , na aplicação do sensor de movimento e vibração , o sensor sobre o condutor emite um campo magnético estacionário ou seja não altera conforme o tempo, assim não havendo alteração no campo e não induzindo corrente no condutor , porem quando o condutor se move varia o campo assim gerando corrente de Foucault e gerando um campo magnético , assim sensor detecta a alteração no campo magnético , e quanto maior esta alteração maior o deslocamento. [8]













Observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.


O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


Com isto pode-se dividir a física em quatro grandes fases:

a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].